题目内容

如图,四边形ABCD中,AB=CD,点E、F、G、H分别是BC、AD、BD、AC的中点,猜想四边形EHFG的形状并说明理由.
证明:∵四边形ABCD中,点E、F、G、H分别是BC、AD、BD、AC的中点,
∴FGAB,HEAB,FHCD,GEDC,
∴GEFH,GFEH(平行于同一条直线的两直线平行);
∴四边形GFHE是平行四边形,
∵四边形ABCD中,点E、F、G、H分别是BC、AD、BD、AC的中点,
∴FG是△ABD的中位线,GE是△BCD的中位线,
∴GF=
1
2
AB,GE=
1
2
CD,
∵AB=CD,
∴GF=GE,
∴四边形EHFG是菱形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网