题目内容
如果A(﹣2,y1),B(3,y2)两点都在反比例函数y=(m>0)的图象上,那么y1与y2的大小关系是_____.
为了鼓励居民节约用水,某市决定实行两级收费制度,水费(元)与用水量(吨)之间的函数关系如图所示.若每月用水量不超过吨(含吨),按政府优惠价收费;若每月用水量超过吨,超过部分按市场价元/吨收费,那么政府优惠价是( )
A. 元/吨 B. 元/吨 C. 元/吨 D. 元/吨
如图,等腰三角形 ABC 的底边 BC 长为 4,面积是 12,腰 AB 的垂直平分线 EF 分别交AB,AC 于点 E、F,若点 D 为底边 BC 的中点,点 M 为线段 EF 上一动点,则△BDM 的周长的最小值为 _________
下列每组数分别是三根木棒的长度,能用它们摆成三角形的是( )
A. 3cm,4cm,8cm B. 8cm,7cm,15cm
C. 5cm,5cm,11cm D. 13cm,12cm,20cm
如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y=(k≠0)的图象上.
(1)求反比例函数的解析式;
(2)直接写出当y<4时x的取值范围.
如图,矩形ABCD在第一象限,AB在x轴的正半轴上,AB=3,BC=1,直线y=x﹣1经过点C交x轴于点E,双曲线y=经过点D,则k的值为( )
A. 1 B. 2 C. 3 D. 4
如图,在平面直角坐标系中,已知抛物线(a≠0)与x轴交于A(﹣1,0)、B(﹣3,0)两点,与y轴交于点C(0,﹣3),其顶点为点D,点E的坐标为(0,﹣),该抛物线与BE交于另一点F,连接BC.
(1)求该抛物线的解析式,并用配方法把解析式化为的形式;
(2)动点M从点D出发,沿抛物线对称轴方向向上以每秒1个单位的速度运动,运动时间为t,连接OM,BM,当t为何值时,△OMB为等腰三角形?(3)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请求出点P的坐标;若不存在,请说明理由.
在△ABC中,AB=AC,D为AC的中点,DE⊥AB于点E,DF⊥BC于点F,且DE=DF.
(1)求证:△ADE≌△CDF;
(2)求证:△ABC是等边三角形.
已知△ABC的∠A=60°,剪去∠A后得到一个四边形,则∠1+∠2的度数为( )
A. 270° B. 240° C. 200° D. 180°