题目内容
【题目】如图,在矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG.
(1)如图1,若在旋转过程中,点E落在对角线AC上,AF,EF分别交DC于点M,N.
①求证:MA=MC;
②求MN的长;
(2)如图2,在旋转过程中,若直线AE经过线段BG的中点P,连接BE,GE,求△BEG的面积
【答案】(1)①见解析;②;(2)△BEG的面积为48﹣6或48+6
【解析】
(1)①由矩形的性质得出,得出,由旋转的性质得:,证出,即可得出;
②设,则,在中,由勾股定理得出方程,解得:,在中,由勾股定理得出,得出,证出,得出即可;
(2)分情况讨论:①过点作于,证明,得出,,在中,由勾股定理得出,得出,得出,得出的面积的面积;
②同①得:,,得出,得出的面积的面积即可.
(1)①证明:四边形是矩形,
,
,
由旋转的性质得:,
,
;
②解:设,则,
在中,,
解得:,
在中,,
,
,
,
又,
,
;
(2)解:分情况讨论:
①如图2所示:过点作于,则,
在和中,,
,
,,
在中,,
,
,
的面积的面积;
②如图3所示:
同①得:,,
,
的面积的面积;
综上所述,的面积为或.
练习册系列答案
相关题目