题目内容
如图,矩形ABCD中,AB<BC,对角线AC、BD相交于点O,则图中的等腰三角形有
- A.2个
- B.4个
- C.6个
- D.8个
B
分析:本题需先根据矩形的性质得出OA=OB=OC=OD,从而得出图中等腰三角形中的个数,即可得出正确答案.
解答:∵矩形ABCD中,AB<BC,对角线AC、BD相交于点O,
∴OA=OB=OC=OD,
∴图中的等腰三角形有△AOB、△AOD、△COD、△BOC四个.
故选B.
点评:本题主要考查了等腰三角形的判定,在解题时要把等腰三角形的判定与矩形的性质相结合是本题的关键.
分析:本题需先根据矩形的性质得出OA=OB=OC=OD,从而得出图中等腰三角形中的个数,即可得出正确答案.
解答:∵矩形ABCD中,AB<BC,对角线AC、BD相交于点O,
∴OA=OB=OC=OD,
∴图中的等腰三角形有△AOB、△AOD、△COD、△BOC四个.
故选B.
点评:本题主要考查了等腰三角形的判定,在解题时要把等腰三角形的判定与矩形的性质相结合是本题的关键.
练习册系列答案
相关题目
如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP两两相似,则a、b间的关系式一定满足( )
A、a≥
| ||
B、a≥b | ||
C、a≥
| ||
D、a≥2b |