题目内容
【题目】如图,梯形ABCD中,,且AD::3,对角线AC,BD交于点O,那么::______.
【答案】1:9:3
【解析】
先根据AD∥BC,可判定△AOD∽△COB, 由于AD:BC=1:3,可得OD:OB=AD:BC=1:3,根据等高的两个三角形,两个三角形的面积比等于对应的底边之比,可得S△AOD:S△AOB=1:3,再根据相似三角形的面积比等于相似比的平方倍可得S△AOD:S△BOC=1:9.
∵梯形ABCD中,AD∥BC,
∴△AOD∽△COB,
∵AD:BC=1:3,
∴OD:OB=AD:BC=1:3,
∴S△AOD:S△AOB=1:3,
∴S△AOD:S△BOC=1:9,
∴S△AOD:S△BOC:S△AOB =1:9:3,
故答案为:1:9:3.
练习册系列答案
相关题目
【题目】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:
时间x(天) | 1≤x<50 | 50≤x≤90 |
售价(元/件) | x+40 | 90 |
每天销量(件) | 200-2x |
已知该商品的进价为每件30元,设销售该商品的每天利润为y元[
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.