题目内容

如图,在等腰直角△ABC的斜边AB上取两点M、N(不与A、B重合)使∠MCN=45°,记AM=m,MN=x,NB=n,试判断以x、m、n为边长的三角形的形状,并给予说明.
分析:把△ACM绕C点逆时针旋转90°,得△CBD,这样∠ACM+∠BCN=45°就集中成一个与∠MCN相等的角,在一条直线上的m、x、n集中为△DNB,只需判定△DNB的形状即可.
解答:解:把△ACM绕C点逆时针旋转90°,得△CBD,连接DN,
∵△ACM≌△BCD,
∴∠ACM=∠BCD,CM=CD,∠MCN=∠NCD=45°,
在△MNC与△DNC中,
CM=CD
∠MCN=∠NCD
CN=CN

∴△MNC≌△DNC(SAS),
∴MN=ND,AM=BD=m,
又∵∠DBN=45°+45°=90°,
∴以x、m、n为边长的三角形的形状为直角三角形.
点评:本题考查等腰直角三角形的性质,难度较大,注意掌握旋下列情形常实施旋转变换:(1)图形中出现等边三角形或正方形,把旋转角分别定为60°、90°;(2)图形中有线段的中点,将图形绕中点旋转180°,构造中心对称全等三角形;(3)图形中出现有公共端点的线段,将含有相等线段的图形绕公共端点,旋转两相等线段的夹角后与另一相等线段重合.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网