题目内容
23、如图,在等腰直角三角形ABC和DEC中,∠BCA=∠BCE=90°,点E在边AB上,ED与AC交于点F,连接AD.
(1)求证:△BCE≌△ACD.
(2)求证:AB⊥AD.
(1)求证:△BCE≌△ACD.
(2)求证:AB⊥AD.
分析:(1)根据∠BCE+∠ECA=∠ECA+∠ACD=90°,得出∠BCE=∠ACD,再利用两边且夹角相等得出三角形全等;
(2)由(1)知,∠B=∠CAD,再得出∠CAD+∠CAE=90°.
(2)由(1)知,∠B=∠CAD,再得出∠CAD+∠CAE=90°.
解答:(1)证明:由题意知∠BCE+∠ECA=∠ECA+∠ACD=90°,
∴∠BCE=∠ACD,
又∵BC=AC,CE=CD,
∴△BCE≌△ACD.
证明:(2)由(1)知,∠B=∠CAD,
又∵∠B+∠CAE=90°,
∴∠CAD+∠CAE=90°,即∠DAE=90°,
∴AB⊥AD.
∴∠BCE=∠ACD,
又∵BC=AC,CE=CD,
∴△BCE≌△ACD.
证明:(2)由(1)知,∠B=∠CAD,
又∵∠B+∠CAE=90°,
∴∠CAD+∠CAE=90°,即∠DAE=90°,
∴AB⊥AD.
点评:此题主要考查了三角形全等证明方法以及等腰三角形的性质,熟练的应用全等的证明定理是解决问题的关键.
练习册系列答案
相关题目
教材中第25章锐角的三角比,在这章的小结中有如下一段话:锐角三角比定量地描述了在直角三角形中边角之间的联系.在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时
sad A=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:
(1)sad 的值为( ▼ )
(2)对于,∠A的正对值sad A的取值范围是 ▼ .
(3)已知,其中为锐角,试求sad的值.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时
sad A=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:
(1)sad 的值为( ▼ )
A. | B.1 | C. | D.2 |
(3)已知,其中为锐角,试求sad的值.
教材中第25章锐角的三角比,在这章的小结中有如下一段话:锐角三角比定量地描述了在直角三角形中边角之间的联系.在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时
sad A=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:
(1)sad 的值为( ▼ )
A. | B.1 | C. | D.2 |
(3)已知,其中为锐角,试求sad的值.