题目内容

【题目】如图,一次函数ykx+b的图象与反比例函数y的图象相交于A(﹣1n)、B2,﹣1)两点,与y轴相交于点CBD垂直于y轴于点D

1)求一次函数与反比例函数的表达式;

2)求△ABD的面积;

3)若Mxy)、Nxy)是反比例函数y上的两点,当xx0时,直接写出yy的大小关系

【答案】1y=﹣x+1y=﹣;(2SADB3;(3y2y1

【解析】

(1)把B点坐标代入ym=﹣2,则反比例函数解析式为y=﹣,再利用反比例函数解析式确定A点坐标;然后利用待定系数法求出一次函数解析式;

2)利用一次函数解析式确定C(﹣40),根据三角形面积公式,利用SAOBSAOC+SBOC进行计算;

3)根据反比例函数的性质求解.

1)把B2,﹣1)代入ym(﹣1)=﹣2

∴反比例函数解析式为y=﹣

A(﹣1n)代入y=﹣得﹣n=﹣2,解得n2

A(﹣12),B2,﹣1)分别代入ykx+b

解得

∴一次函数解析式为y=﹣x+1

y0时,﹣x+10,解得x1,则C10

SADBSADCSBDC×2×1+×2×23

3y2y1

练习册系列答案
相关题目

【题目】已知ABO直径,ACO的切线,BCO于点D(如图1).

(1)若AB=2,∠B=30°,求CD的长;

(2) 取AC的中点E,连结DE(如图2),求证:DEO相切.

【答案】(1);(2)见解析

【解析】分析:连接AD ,根据AC是⊙O的切线,AB是⊙O的直径,得到∠CAB=ADB=90°,根据∠B=30°,解直角三角形求得的长度.

连接ODAD.根据DE=CE=EAEDA=EAD. 根据OD=OA,得到

ODA=DAO,得到∠EDA+ODA=EAD+DAO.得到∠EDO=90°即可.

详解:(1)如图,连接AD ,

AC是⊙O的切线,AB是⊙O的直径,

∴∠CAB=ADB=90°,

ΔCABCAD均是直角三角形.

∴∠CAD=B=30°.

RtΔCAB中,AC=ABtan30°=

∴在RtΔCAD中,CD=ACsin30°=

(2)如图,连接ODAD.

AC是⊙O的切线,AB是⊙O的直径,

∴∠CAB=ADB=ADC=90°,

又∵EAC中点,

DE=CE=EA, 

∴∠EDA=EAD.

OD=OA

∴∠ODA=DAO

∴∠EDA+ODA=EAD+DAO.

即:∠EDO=EAO=90°. 

又点D在⊙O上,因此DE与⊙O相切.

点睛:考查解直角三角形,圆周角定理,切线的判定与性质等,属于圆的综合题,比较基础.注意切线的证明方法,是高频考点.

型】解答
束】
21

【题目】课外活动时间,甲、乙、丙、丁4名同学相约进行羽毛球比赛.

(1)如果将4名同学随机分成两组进行对打,求恰好选中甲乙两人对打的概率;

(2)如果确定由丁担任裁判,用“手心、手背”的方法在另三人中竞选两人进行比赛.竞选规则是:三人同时伸出“手心”或“手背”中的一种手势,如果恰好只有两人伸出的手势相同,那么这两人上场,否则重新竞选.这三人伸出“手心”或“手背”都是随机的,求一次竞选就能确定甲、乙进行比赛的概率.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网