题目内容
【题目】如图,,,垂足分别为E、D,CE,BD相交于.
(1)若,求证:;
(2)若,求证:.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1)根据已知条件,∠BEC=∠CDB=90°,∠EOB=∠DOC,所以∠B=∠C,则△ABO△ACO(AAS),即OB=OC.
(2)根据(1)可得△BOE△COD(AAS),即OE=OD,再由CE⊥AB,BD⊥AC可得AO是∠BAC的角平分线,故∠1=∠2.
(1)∵CE⊥AB,BD⊥AC,∴∠BEC=∠CDB=90°,
又∵∠EOB=∠DOC,∴∠B=∠C,∴在△ABO与△ACO中,
,∴△ABO△ACO(AAS),∴OB=OC.
(2)由(1)知,∠BEO=∠CDO,∴在△BOE与△COD中,
,∴△BOE△COD(AAS),∴OE=OD.
又∵CE⊥AB,BD⊥AC,∴AO是∠BAC的角平分线,∴∠1=∠2.
练习册系列答案
相关题目
【题目】小明同学在用描点法画二次函数y=x2+bx+c图像时,由于粗心他算错了一个y值,列出了下面表格:
x | … | -1 | 0 | 1 | 2 | 3 | … |
y=x2+bx+c | … | 5 | 3 | 2 | 3 | 6 | … |
(1)请你帮他指出这个错误的y值,并说明理由;
(2)若点M(m,y1),N(m+4,y2)在二次函数y=x2+bx+c图像上,且m>-1,试比较y1与y2的大小.