题目内容
在Rt△ABC中,AC=6,BC=8,分别以它的三边为直径向上作三个半圆,则阴影部分面积为
- A.24
- B.24π
- C.
- D.
A
分析:先求出直角三角形的斜边,再利用:阴影部分面积=两个小半圆面积+直角三角形面积-以斜边为直径的大半圆面积.
解答:在Rt△ABC中,AC=6,BC=8,
AB===10,
S阴影=π()2+π()2+×6×8-π()2
=+8π+24-
=24.
故选A.
点评:本题考查勾股定理的知识,难度一般,解答本题的关键是利用勾股定理得出AB的长及找出阴影部分面积的表示,另外本题也进一步验证了勾股定理.
分析:先求出直角三角形的斜边,再利用:阴影部分面积=两个小半圆面积+直角三角形面积-以斜边为直径的大半圆面积.
解答:在Rt△ABC中,AC=6,BC=8,
AB===10,
S阴影=π()2+π()2+×6×8-π()2
=+8π+24-
=24.
故选A.
点评:本题考查勾股定理的知识,难度一般,解答本题的关键是利用勾股定理得出AB的长及找出阴影部分面积的表示,另外本题也进一步验证了勾股定理.
练习册系列答案
相关题目
在Rt△ABC中,已知a及∠A,则斜边应为( )
A、asinA | ||
B、
| ||
C、acosA | ||
D、
|
如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为( )
A、9:4 | B、9:2 | C、3:4 | D、3:2 |