题目内容
【题目】如图,从A地到B地的公路需要经过C地,根据规划,将在A,B两地之间修建一条笔直的公路.已知AC=10千米,∠CAB=34°,∠CBA=45°,求改直后公路AB的长(结果精确到0.1千米)
(参考数据:sin34°≈0.559,cos34°≈0.829,tan34°≈0.675)
【答案】12.3千米.
【解析】
试题作CH⊥AB于H.在Rt△ACH中根据CH=ACsin∠CAB求出CH的长,由AH=ACcos∠CAB求出AH的长,同理可得出BH的长,根据AB=AH+BH可得出结论;
试题解析:解:如图,过点C作CD⊥AB于点D.
在Rt△ACD中,∠ADC=90°,sin34°=,cos34°=,∴CD≈10×0.559=5.59,AD≈10×0.675=6.75.∵∠ABC=45°,∴BD=CD=5.59,∴AB=AD+BD=6.75+5.59≈12.3(千米).
答:改直后的公路AB的长约为12.3千米.
【题目】数学活动课上,老师提出问题:如图,有一张长4dm,宽3dm的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.
下面是探究过程,请补充完整:
(1)设小正方形的边长为xdm,体积为ydm3,根据长方体的体积公式得到y和x的关系式: ;
(2)确定自变量x的取值范围是 ;
(3)列出y与x的几组对应值.
x/dm | … |
|
|
|
|
| 1 |
| … | |||
y/dm3 | … | 1.3 | 2.2 | 2.7 | 3.0 | 2.8 | 2.5 | 1.5 | 0.9 | … |
(说明:表格中相关数值保留一位小数)
(4)在下面的平面直角坐标系xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(5)结合画出的函数图象,解决问题:当小正方形的边长约为 dm时,盒子的体积最大,最大值约为 dm3.