题目内容
【题目】如图,已知AB=AC,∠A=36°,AB的中垂线MN交AC于点D,交AB于点M,CE平分∠ACB,交BD于点E.下列结论:①BD是∠ABC的角平分线;②ΔBCD是等腰三角形;③BE=CD;④ΔAMD≌ΔBCD;⑤图中的等腰三角形有5个。其中正确的结论是___.(填序号)
【答案】①②③⑤
【解析】
首先由AB的中垂线MD交AC于点D、交AB于点M,求得△ABD是等腰三角形,即可求得∠ABD的度数,又由AB=AC,即可求得∠ABC与∠C的度数,则可求得所有角的度数,进而得出BD是∠ABC的角平分线,可得△BCD也是等腰三角形,BE=CE,ΔBCD是等腰三角形,ΔAMD为直角三角形,故这两个三角形不可能全等,由角的度数即可得图中的等腰三角形.
解:∵AB=AC,∠A=36°,
∴∠ABC=∠ACB=72°
又∵CE平分∠ACB,
∴∠DCE=∠BCE=36°
又∵AB的中垂线MN交AC于点D,交AB于点M,
∴∠AMD=∠BMD=90°,AD=BD,
∴∠ABD=∠BAD=36°,∠ADB=108°,
又∵∠ADB=∠ACB+∠DBC=108°
∴∠DBC=36°
∠ABD=∠DBC,
∴BD是∠ABC的角平分线,
故①结论正确.
∠BDC=72°=∠ACB,
∴ΔBCD是等腰三角形,
故②结论正确.
∵∠DBC=∠ECB=36°
∴△BEC为等腰三角形,
∴BE=CE
又∵∠BDC=∠CED=72°
∴△DCE为等腰三角形,
∴CD=CE
∴BE=CD
故③结论正确.
∵ΔBCD是等腰三角形,ΔAMD为直角三角形
∴这两个三角形不可能全等,
故④结论错误.
图中△ABC、△ADB、△BCD、△BEC、△DCE都为等腰三角形,故⑤结论正确.
故本题正确的结论是①②③⑤.
【题目】某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们分别在A、B、C三个出口处,对离开园区的游客进行调查,其中在A出口调查所得的数据整理后绘成如下图所示统计图:
(1)在A出口的被调查游客中,购买瓶装饮料的数量的中位数是______瓶、众数是______瓶、平均数是______瓶;
(2)已知A、B、C三个出口的游客量比为2:2:1,用上面图表的人均购买饮料数量计算:这一天景区内若有50万游客,那么这一天购买的饮料的总数是多少?
表一:
出口 | B | C |
人均购买饮料数量(瓶) | 3 | 2 |
(3)若每瓶饮料要消耗0.5元处理包装的环保费用,该日需要花费多少钱处理这些饮料瓶?由此请你对游客做一点环保宣传建议.