题目内容
【题目】如图,AB=AC,AD是△ABC的角平分线,DE⊥AB于E,DF⊥AC于F,则下列四个结论中:①DE=DF;②AD上任意一点到AB,AC的距离相等;③∠BDE=∠CDF;④BD=CD且AD⊥BC,其中正确的有( )
A. 1个B. 2个C. 3个D. 4个
【答案】D
【解析】
由题意知,△ABC是等腰三角形,由三线合一的性质知,点D是BC的中点,AD⊥BC,可得④正确;根据角平分线的性质可得①②正确;再由∠DEB=∠DFC=90°,∠B=∠C,根据三角形内角和定理可得③正确;故可得到4个结论均正确.
解:∵AB=AC,
∴△ABC是等腰三角形,∠B=∠C.
∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,
∴AD⊥BC,BD=CD,DE=DF,AD上任意一点到AB、AC的距离相等,故①②④正确;
∵DE⊥AB于E,DF⊥AC,
∴∠DEB=∠DFC=90°.
∵∠DEB=∠DFC=90°,∠B=∠C,
∴∠BDE=∠CDF,即③正确;
故选:D.
练习册系列答案
相关题目