题目内容
【题目】如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,求证:∠AEF=90°.
【答案】证明见解析.
【解析】试题分析:利用正方形的性质得出AB=BC=CD=DA,∠B=∠C=∠D=90°,设出边长为a,进一步利用勾股定理求得AE、EF、AF的长,再利用勾股定理逆定理判定即可.
试题解析:证明:∵ABCD为正方形,∴AB=BC=CD=DA,∠B=∠C=∠D=90°.设AB=BC=CD=DA=a.∵E是BC的中点,且CF=CD,∴BE=EC=a,CF=a.在Rt△ABE中,由勾股定理可得:AE2=AB2+BE2=a2,同理可得:EF2=EC2+FC2=a2,AF2=AD2+DF2=a2.∵AE2+EF2=AF2,∴△AEF为直角三角形,∴∠AEF=90°.
练习册系列答案
相关题目
【题目】如图,在△ABC中,∠C=,点O在AC上,以OA为半径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E.
(1)求证:∠EDB=∠B.
(2)若sinB=,AB=10,OA=2,求线段DE的长.
【题目】某商店能过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如下表:
第1个 | 第2个 | 第3个 | 第4个 | … | 第n个 | |
调整前单价x(元) | x1 | x2=6 | x3=72 | x4 | … | xn |
调整后单价x(元) | y1 | y2=4 | y3=59 | y4 | … | yn |
已知这n个玩具调整后的单价都大于2元.
(1)求y与x的函数关系式,并确定x的取值范围;
(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?
(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导出过.