题目内容

【题目】某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.

(1)求水柱所在抛物线(第一象限部分)的函数表达式;

(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?

(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.

【答案】(1)水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣3)2+5(0<x<8);(2)为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内;(3)扩建改造后喷水池水柱的最大高度为米.

【解析】

(1)根据顶点坐标可设二次函数的顶点式,代入点(8,0),求出a值,此题得解;

(2)利用二次函数图象上点的坐标特征,求出当y=1.8x的值,由此即可得出结论;

(3)利用二次函数图象上点的坐标特征可求出抛物线与y轴的交点坐标,由抛物线的形状不变可设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+,代入点(16,0)可求出b值,再利用配方法将二次函数表达式变形为顶点式,即可得出结论.

1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x﹣3)2+5(a≠0),

将(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,解得:a=﹣

∴水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣3)2+5(0<x<8).

(2)当y=1.8时,有﹣(x﹣3)2+5=1.8,解得:x1=﹣1,x2=7,

∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.

(3)当x=0时,y=﹣(x﹣3)2+5=

设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+

∵该函数图象过点(16,0),

0=﹣×162+16b+,解得:b=3,

∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+3x+=﹣(x﹣2+

∴扩建改造后喷水池水柱的最大高度为米.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网