题目内容
【题目】如图,AD是△ABC边上的高,BE平分∠△ABC交AD于点E.若∠C=60°,∠BED=70°. 求∠ABC和∠BAC的度数.
【答案】∠ABC=40°, ∠BAC=80°
【解析】试题分析:先根据AD是△ABC的高得出∠ADB=90°,再由三角形内角和定理及三角形外角的性质可知∠DBE+∠ADB+∠BED=180°,故∠DBE=180°-∠ADB-∠BED=20°.根据BE平分
∠ABC得出∠ABC=2∠DBE=40°.根据∠BAC+∠ABC+∠C=180°,∠C=60°即可得出结论.
解:∵AD是△ABC的高,
∴∠ADB=90°,
又∵,∠°BED=70°,
∴.
∵BE平分∠ABC,
∴∠ABC=2∠DBE=40° .
又∵∠BAC+∠ABC+∠C=180°,∠C=60°,
∴∠BAC=180°-∠ABC-∠C=80°.
练习册系列答案
相关题目