题目内容
【题目】如图所示,在平行四边形ABCD中,∠A=90°,AB=6cm,BC=12cm,点E由点A出发沿AB方向向点B匀速移动,速度为1cm/s,点F由点B出发沿BC方向向点C匀速移动,速度为2cm/s,如果动点E、F同时从A、B两点出发,连接EF,若设运动时间为ts,解答下列问题.
(1)当t为 时,△BEF为等腰直角三角形;
(2)当t为 时,△DFC为等腰直角三角形;
(3)是否存在某一时刻,使△EFB∽△FDC?若存在,求出t的值,若不存在,请说明理由.
【答案】(1)2s;(2)3s;(3)当t=1.5时,△EFB∽△FDC.
【解析】
试题分析:(1)由已知条件易证四边形ABCD是矩形,所以∠A=∠B=∠C=90°,若△BEF为等腰直角三角形,则BE=BF,进而可求出t的值;
(2)由(1)可知∠C=90°,若△DFC为等腰直角三角形,则CF=DC,进而可求出t的值;
(3)若△EFB∽△FDC,则BE:CF=BF:DC,结合题目的已知条件可得到关于t的方程,解方程即可得知是否存在t的值.
解:
(1)∵在平行四边形ABCD中,∠A=90°,
∴四边形ABCD是矩形,
∴∠A=∠B=∠C=90°,
∴若△BEF为等腰直角三角形,则BE=BF,
∵点E由点A出发沿AB方向向点B匀速移动,速度为1cm/s,点F由点B出发沿BC方向向点C匀速移动,速度为2cm/s,AB=6cm,BC=12cm,
∴BE=(6﹣t)cm,BF=2t,
∴6﹣t=2t,
∴t=2s,
故答案为2s;
(2)由(1)可知若△DFC为等腰直角三角形,则CF=DC,
∵CF=2tcm,DC=6cm,
∴2t=6,
∴t=3s,
故答案为3s;
(3)存在某一时刻,使△EFB∽△FDC,
∵△EFB∽△FDC,
∴BE:CF=BF:DC,
∴,
整理得:2t2﹣15t+18=0,
即(2t﹣3)(t﹣6)=0,
解得:t=1.5或t=6(舍),
∴当t=1.5时,△EFB∽△FDC.