题目内容
【题目】如图,在边长为的正方形ABCD中,点E,F是对角线AC的三等分点,点P在正方形的边上,则满足PE+PF=的点P的个数是( )
A.0B.4C.8D.16
【答案】B
【解析】
作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM,由对称性可得CM=5,∠BCM=45°,根据勾股定理得EM=,进而即可得到结论.
作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM.
∵正方形ABCD中,边长为,
∴AC=×=15,
∵点E,F是对角线AC的三等分点,
∴EC=10,FC=AE=5,
∵点M与点F关于BC对称,
∴CF=CM=5,∠ACB=∠BCM=45°,
∴∠ACM=90°,
∴EM=,
∴在BC边上,只有一个点P满足PE+PF=,
同理:在AB,AD,CD边上都存在一个点P,满足PE+PF=,
∴满足PE+PF=的点P的个数是4个.
故选B.
【题目】某文具商店销售学习用品,已知某品牌钢笔的进价是20元,销售过程发现,每月销量y支与销售单价x元(x为正整数)之间满足一次函数关系,且每支钢笔的售价不低于进价,也不高于35元,下表是y与x之间的对应数据:
销售单价x(元) | … | 22 | 24 | 30 | … |
月销量y(只) | … | 92 | 84 | 60 | … |
(1)求y与x的函数关系式并直接写出自变量x的取值范围.
(2)每支钢笔的售价定为多少元时,月销售利润恰为600元?
(3)每支钢笔的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
【题目】小明和小红为了更直观了解“物体质量”的概念,各选五个鸡蛋称重,以每个为标准,大于或等于即为达标,超过标准部分的克数记为正数,不足标准部分的克数记为负数.小明所统计的数据为实际称重读数,小红为记录数据,把所得数据整理成如下统计表(单位:).
序号 数据 姓名 | 1 | 2 | 3 | 4 | 5 |
小明 | 48 | 50 | 49 | 51 | |
小红 | 2 | 1 |
经过统计发现,小明所选鸡蛋质量的平均数为,小红所选鸡蛋质量的众数为,根据以上信息:
(1)填空: , ;
(2)通过计算说明,小明和小红哪个选取的鸡蛋大小更均匀,请说明理由;
(3)现从小明和小红所选取的鸡蛋里各随机挑一个,这两个鸡蛋质量都达标的概率是多少?