题目内容
【题目】已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2),
(1)求这两个函数的关系式;
(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;
(3)如果点C与点A关于x轴对称,求△ABC的面积.
【答案】(1)y1=,y2=2x+2;(2)x<﹣2 或0<x<1;(3)12.
【解析】
(1)由A在反比例函数图象上,把A的坐标代入反比例解析式,确定出k的值,从而得出反比例函数解析式,又B也在反比例函数图象上,把B的坐标代入确定出的反比例解析式即可确定出m的值,从而得到B的坐标,由A和B都在一次函数图象上,故把A和B都代入到一次函数解析式中,得到关于a与b的方程组,求出方程组的解得到a与b的值,从而确定出一次函数解析式;
(2)根据图象结合交点坐标即可求得;
(3)由点C与点A关于x轴对称可得AC,AC边上的高为A,B两点横坐标绝对值的和,代入三角形的面积公式即可.
解:(1)∵函数y1=的图象过点A(1,4),即4=,
∴k=4,即y1=,
又∵点B(m,﹣2)在y1=上,
∴m=﹣2,
∴B(﹣2,﹣2),
又∵一次函数y2=ax+b过A、B两点,
即 ,
解之得.
∴y2=2x+2.
综上可得y1=,y2=2x+2.
(2)∵要使y1>y2,即函数y1的图象总在函数y2的图象上方,
∴当x<﹣2 或0<x<1时y1>y2.
(3)过B作BD⊥AC于D,
由图形及题意可得: AC=4+4=8,BD=|-2|+1=3,
∴△ABC的面积S△ABC=AC×BD=×8×3=12.
练习册系列答案
相关题目