题目内容
(1)求证:△DFE∽△DAB;
(2)求线段CF的长.
分析:(1)AD∥BC,DE=3,BC=6,
=
=
=
,
=
.又∠EDF=∠BDA,即可证明△DFE∽△DAB.
(2)由△DFE∽△DAB,利用对应边成比例,将已知数值代入即可求得答案.
| DF |
| FB |
| DE |
| BC |
| 3 |
| 6 |
| 1 |
| 2 |
| DF |
| DA |
| DE |
| DB |
(2)由△DFE∽△DAB,利用对应边成比例,将已知数值代入即可求得答案.
解答:证明:(1)∵AD∥BC,DE=3,BC=6,∴
=
=
=
,
∴
=
,∵BD=6,∴DF=2.
∵DA=4,∴
=
=
,
=
=
.∴
=
.
又∵∠EDF=∠BDA,∴△DFE∽△DAB.
(2)∵△DFE∽△DAB,∴
=
.
∵AB=5,∴
=
,∴EF=
=2.5.
∵DE∥BC,∴
=
.
∴
=
,∴CF=5.
(或利用△CFB≌△BAD).
| DF |
| FB |
| DE |
| BC |
| 3 |
| 6 |
| 1 |
| 2 |
∴
| DF |
| BD |
| 1 |
| 3 |
∵DA=4,∴
| DF |
| DA |
| 2 |
| 4 |
| 1 |
| 2 |
| DE |
| DB |
| 3 |
| 6 |
| 1 |
| 2 |
| DF |
| DA |
| DE |
| DB |
又∵∠EDF=∠BDA,∴△DFE∽△DAB.
(2)∵△DFE∽△DAB,∴
| EF |
| AB |
| DE |
| DB |
∵AB=5,∴
| EF |
| 5 |
| 3 |
| 6 |
| 5 |
| 2 |
∵DE∥BC,∴
| CF |
| EF |
| BC |
| DE |
∴
| CF |
| 2.5 |
| 6 |
| 3 |
(或利用△CFB≌△BAD).
点评:此题考查学生对梯形和相似三角形的判定与性质的理解和掌握,第(2)问也可利用△CFB≌△BAD求得线段CF的长,不管学生用了哪种方法,只要是正确的,就要积极地给予表扬,以此激发学生的学习兴趣.
练习册系列答案
相关题目