题目内容
【题目】如图,∠1=∠2,P为BN上一点,且PD⊥BC于点D,AB+BC=2BD.试说明:∠BAP+∠BCP=180°.
【答案】见解析
【解析】作PE垂直于AB于E,根据角平分线的性质可知PD=PE,HL定理可知△PBD≌△PBE,可得BD=BE,根据题中线段和差的关系,可得△PAE≌△PCD,所以可知∠PAE=∠PCD,根据∠PAE+∠PAB=180°,即可证明题中关系.
证明:如图,过点P作PE⊥BA于E.
∵PD⊥BC,PE⊥BM,∠1=∠2,
∴PD=PE.
∵PD⊥BC,PE⊥BM,PD=PE,BP=BP,
∴△BPD≌△BPE.
∴BE=BD.
∵AB+BC=2BD,BC=BD+DC,AB=BE-AE,
∴AE=CD.
∵PD=PE,AE=CD,PD⊥BC,PE⊥BM,
∴△PCD≌△PAE,
∴∠PCB=∠PAE.
∵∠BAP+∠PAE=180°,
∴∠BAP+∠PCB=180°.
练习册系列答案
相关题目