题目内容

【题目】如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.

(1)求证:AE=BF;

(2)连接GB,EF,求证:GB∥EF;

(3)若AE=1,EB=2,求DG的长.

【答案】(1)详见解析;(2)详见解析;(3)

【解析】

试题分析:(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行即可得证;(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长即可.

试题解析:(1)证明:连接BD,

在Rt△ABC中,∠ABC=90°,AB=BC,

∴∠A=∠C=45°,

∵AB为圆O的直径,

∴∠ADB=90°,即BD⊥AC,

∴AD=DC=BD=AC,∠CBD=∠C=45°,

∴∠A=∠FBD,

∵DF⊥DG,

∴∠FDG=90°,

∴∠FDB+∠BDG=90°,

∵∠EDA+∠BDG=90°,

∴∠EDA=∠FDB,

在△AED和△BFD中,

∴△AED≌△BFD(ASA),

∴AE=BF;

(2)证明:连接EF,BG,

∵△AED≌△BFD,

∴DE=DF,

∵∠EDF=90°,

∴△EDF是等腰直角三角形,

∴∠DEF=45°,

∵∠G=∠A=45°,

∴∠G=∠DEF,

∴GB∥EF;

(3)∵AE=BF,AE=1,

∴BF=1,

在Rt△EBF中,∠EBF=90°,

∴根据勾股定理得:EF2=EB2+BF2

∵EB=2,BF=1,

∴EF==

∵△DEF为等腰直角三角形,∠EDF=90°,

∴cos∠DEF=

∵EF=

∴DE=×=

∵∠G=∠A,∠GEB=∠AED,

∴△GEB∽△AED,

=,即GEED=AEEB,

GE=2,即GE=

则GD=GE+ED=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网