题目内容

【题目】如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是cm.

【答案】8
【解析】解:设AH=a,则DH=AD﹣AH=8﹣a,

在Rt△AEH中,∠EAH=90°,AE=4,AH=a,EH=DH=8﹣a,

∴EH2=AE2+AH2,即(8﹣a)2=42+a2

解得:a=3.

∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,

∴∠BFE=∠AEH.

又∵∠EAH=∠FBE=90°,

∴△EBF∽△HAE,

= = =

∵CHAE=AE+EH+AH=AE+AD=12,

∴CEBF= CHAE=8.

所以答案是:8.

【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对矩形的性质的理解,了解矩形的四个角都是直角,矩形的对角线相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网