题目内容
如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
①求证:CE=CF;
②在图①中,若G在AD上,且∠GCE=45°,则GE、BE、GD有何关系?证明你的结论;
③运用①②解答中所积累的经验和知识,完成下题.如图②在直角梯形ABCD中,AD∥BC(BC>AD)∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE长.
①求证:CE=CF;
②在图①中,若G在AD上,且∠GCE=45°,则GE、BE、GD有何关系?证明你的结论;
③运用①②解答中所积累的经验和知识,完成下题.如图②在直角梯形ABCD中,AD∥BC(BC>AD)∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE长.
分析:(1)利用已知条件,可证出△BCE≌△DCF(SAS),即CE=CF.
(2)借助(1)的全等得出∠BCE=∠DCF,∴∠GCF=∠BCE+∠DCG=90°-∠GCE=45°,即∠GCF=∠GCE,又因为CE=CF,CG=CG,∴△ECG≌△FCG,∴EG=GF,∴GE=DF+GD=BE+GD.
(3)过C作CG⊥AD,交AD延长线于G,先证四边形ABCG是正方形(有一组邻边相等的矩形是正方形).
再设DE=x,利用(1)、(2)的结论,在Rt△AED中利用勾股定理可求出DE.
(2)借助(1)的全等得出∠BCE=∠DCF,∴∠GCF=∠BCE+∠DCG=90°-∠GCE=45°,即∠GCF=∠GCE,又因为CE=CF,CG=CG,∴△ECG≌△FCG,∴EG=GF,∴GE=DF+GD=BE+GD.
(3)过C作CG⊥AD,交AD延长线于G,先证四边形ABCG是正方形(有一组邻边相等的矩形是正方形).
再设DE=x,利用(1)、(2)的结论,在Rt△AED中利用勾股定理可求出DE.
解答:(1)证明:在正方形ABCD中,
∵BC=CD,∠B=∠CDF=90°,BE=DF,
∴△CBE≌△CDF(SAS),
∴CE=CF;
(2)解:GE=BE+GD,
理由:∵△CBE≌△CDF,
∴∠BCE=∠DCF,
∴∠ECD+∠ECB=∠ECD+∠FCD,
即∠ECF=∠BCD=90°,又∠GCE=45°,
∴∠GCF=∠ECF-∠ECG=45°,
∵在△GEC和△GFC中
,
∴△ECG≌△FCG(SAS),
∴EG=GF,
∴GE=DF+GD=BE+GD;
(3)解:过C作CG⊥AD于G,
在直角梯形ABCD中∵AD∥BC,∠A=∠B=90°,∠CGA=90°,AB=BC,
∴四边形ABCG为正方形,
∴AG=BC=12,
∵∠DCE=45°,由①②可得ED=BE+DG,
设DE=x,则DG=x-4,
∴AD=16-x
在Rt△AED中,∵DE2=AD2+AE2,∴x2=(16-x)2+82
∴x=10,
即DE=10.
∵BC=CD,∠B=∠CDF=90°,BE=DF,
∴△CBE≌△CDF(SAS),
∴CE=CF;
(2)解:GE=BE+GD,
理由:∵△CBE≌△CDF,
∴∠BCE=∠DCF,
∴∠ECD+∠ECB=∠ECD+∠FCD,
即∠ECF=∠BCD=90°,又∠GCE=45°,
∴∠GCF=∠ECF-∠ECG=45°,
∵在△GEC和△GFC中
|
∴△ECG≌△FCG(SAS),
∴EG=GF,
∴GE=DF+GD=BE+GD;
(3)解:过C作CG⊥AD于G,
在直角梯形ABCD中∵AD∥BC,∠A=∠B=90°,∠CGA=90°,AB=BC,
∴四边形ABCG为正方形,
∴AG=BC=12,
∵∠DCE=45°,由①②可得ED=BE+DG,
设DE=x,则DG=x-4,
∴AD=16-x
在Rt△AED中,∵DE2=AD2+AE2,∴x2=(16-x)2+82
∴x=10,
即DE=10.
点评:本题是一道几何综合题,内容涉及三角形的全等、图形的旋转以及勾股定理的应用,重点考查学生的数学学习能力,是一道好题.本题的设计由浅入深,循序渐进,考虑到学生的个体差异.从阅卷的情况看,本题的得分在4-8分的学生居多.前两个小题学生做得较好,第三小题,因为学生不懂得用前面积累的知识经验答题,数学学习能力不强,造成本小题得分率较低.
练习册系列答案
相关题目