题目内容
已知反比例函数
和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+2,b+k)两点.
(1)求:反比例函数的解析式.
(2)如图,已知点A在第一象限,且同时在上述两函数的图象上.求点A的坐标.
(3)利用(2)的结果,问在x轴上是否存在点P,使得△AOP为等腰三角形?若存在,把符合条件的P点坐标直接写出来;若不存在,说明理由.
![]()
考点:
反比例函数综合题.
分析:
(1)先把(a,b)、(a+2,b+k)代入y=2x+1得到
,然后结果代数式变形可解得k=4,则可确定反比例函数解析式;
(2)把一次函数与反比例函数解析式组成方程组,再解方程组可确定A点坐标;
(3)先利用勾股计算出OA=
,过A点作AP1⊥x轴,则△OAP1为等腰三角形;作点O关于AP1的对称点P2,则△OAP2为等腰三角形;以O点为圆心,OA为半径画弧交x轴与P3,P4,则△OAP3、△OAP4为等腰三角形;然后利用线段长分别确定各点坐标.
解答:
解:(1)把(a,b)、(a+2,b+k)代入y=2x+1得
,解得k=4,
所以反比例函数解析式为y=
;(2)解方程组
得
或
,
∵A点在第一象限,
∴点A的坐标为(1,1);(3)存在.
OA=
=
,
满足条件的点P坐标为( 1,0)、(2,0)、(
,0)、(﹣
,0).
![]()
点评:
本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、等腰三角形的判定与性质;运用分类讨论的思想解决问题.
练习册系列答案
相关题目
2011年5月9日,我市成立了首支食品药品犯罪侦缉支队,专门打击危害食品药品安全的违法犯罪行为,食品安全已越来越受到人们的关注.我市某食品加工企业严把质量关,积极生产“绿色健康”食品,由于受食品原料供应等因素的影响,生产“绿色健康”食品的产量随月份增加呈下降趋势.今年前5个月生产的“绿色健康”食品y(吨)与月份(x)之间的关系如下表:
(1)请你从学过的一次函数、二次函数、反比例函数确定哪种函数关系能表示出y与x的变化规律,并求出y与x的函数关系式.
(2)随着“绿色健康”食品生产量的减少,每生产一吨“绿色健康”食品,企业相应获得的利润有所提高,且每生产一吨获得的利润P(百元)与月份x(月)成一次函数关系.已知1月份每生产一吨“绿色健康”食品,企业相应获利80百元,4月份每生产一吨“绿色健康”食品企业相应获利95百元.那么今年哪月份该企业获得的利润最大?最大利润是多少百元?
(3)受国家法律保护的激励,该企业决定今年5月份起,更新食品安全检测设备的同时,扩建食品原料基地以提高生产“绿色健康”食品的产量.更新设备检测费用和扩建原料基地费用共用去4000百元,预计从6月份起,每月生产一吨“绿色健康”食品的产量在上一个月基础上增加a%,与此同时,每生产一吨“绿色健康”食品,企业相应获得的利润在上一个月的基础上增加20%,要使今年6、7月份利润的总和在扣除设备检测费用和扩建基地费用后,仍是今年5月份月利润的2倍,求a的整数值.(参考数据:
≈3.317,
≈3.464,
≈3.606,
≈3.742)
| 月份x(月) | 1 | 2 | 3 | 4 | 5 | … |
| “绿色健康”食品产量y(吨) | 48 | 46 | 44 | 42 | 40 | … |
(2)随着“绿色健康”食品生产量的减少,每生产一吨“绿色健康”食品,企业相应获得的利润有所提高,且每生产一吨获得的利润P(百元)与月份x(月)成一次函数关系.已知1月份每生产一吨“绿色健康”食品,企业相应获利80百元,4月份每生产一吨“绿色健康”食品企业相应获利95百元.那么今年哪月份该企业获得的利润最大?最大利润是多少百元?
(3)受国家法律保护的激励,该企业决定今年5月份起,更新食品安全检测设备的同时,扩建食品原料基地以提高生产“绿色健康”食品的产量.更新设备检测费用和扩建原料基地费用共用去4000百元,预计从6月份起,每月生产一吨“绿色健康”食品的产量在上一个月基础上增加a%,与此同时,每生产一吨“绿色健康”食品,企业相应获得的利润在上一个月的基础上增加20%,要使今年6、7月份利润的总和在扣除设备检测费用和扩建基地费用后,仍是今年5月份月利润的2倍,求a的整数值.(参考数据:
| 11 |
| 12 |
| 13 |
| 14 |