题目内容

【题目】(3分)如图,在矩形ABCD中,BC=AB,ADC的平分线交边BC于点E,AHDE于点H,连接CH并延长交边AB于点F,连接AE交CF于点O.给出下列命题:

①∠AEB=AEH;DH=EH;HO=AE;BC﹣BF=EH.

其中正确命题的序号是 (填上所有正确命题的序号).

【答案】①③

【解析】

试题在矩形ABCD中,AD=BC=AB=CDDE平分ADC,∴∠ADE=CDE=45°,ADDE,∴△ADH是等腰直角三角形,AD=AB,AH=AB=CD,∵△DEC是等腰直角三角形,DE=CD,AD=DE,∴∠AED=67.5°,∴∠AEB=180°﹣45°﹣67.5°=67.5°,∴∠AED=AEB,故正确;

设DH=1,则AH=DH=1,AD=DE=HE=HE=,故错误;

∵∠AEH=67.5°,∴∠EAH=22.5°,DH=CH,EDC=45°,∴∠DHC=67.5°,∴∠OHA=22.5°,∴∠OAH=OHA,OA=OH,∴∠AEH=OHE=67.5°,OH=OE,OH=AE,故正确;

AH=DH,CD=CE,在AFH与CHE中,∵∠AHF=HCE=22.5°FAH=HEC=45°,AH=CE∴△AFH≌△CHE,AF=EH,在ABE与AHE中,AB=AH,BEA=HEA,AE=AE,∴△ABE≌△AHE,BE=EH,BC﹣BF=(BE+CE)﹣(AB=AF)=(CD+EH)﹣(CD﹣EH)=2EH,故错误,故答案为:①③

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网