题目内容
(如图,已知∠AOB=ll0°,∠AOC=m∠AOD,∠COE=n∠BOC,且3(m-2)+4=m+2,单项式
的系数为n.
(1)求4(m-n) 2-(m-n) 2-5的值;
(2)当∠COD:∠COE=3:2时,试求∠COD的度数.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823023423803493.png)
(1)求4(m-n) 2-(m-n) 2-5的值;
(2)当∠COD:∠COE=3:2时,试求∠COD的度数.
(1)
;(2)33°
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823023423818352.png)
试题分析:(1)先解方程3(m-2)+4=m+2得到m的值,再根据单项式的系数的定义得到n的值,然后化简代数式,最后代入求值;
(2)由(1)可知∠AOC =2∠AOD,∠COE=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823023423834336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823023423834336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823023423834336.png)
(1)解方程3(m-2)+4=m+2得m="2"
由已知有n=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823023423834336.png)
∴4(m-n)2-(m-n)2-5=3(m-n)2-5
当m=2,n=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823023423834336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823023423912387.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823023423912387.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823023423990439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823023423818352.png)
(2)由(1)可知:∠AOC =2∠AOD,∠COE=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823023423834336.png)
∴∠AOD=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823023423834336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823023423834336.png)
∴∠COD+∠COE=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823023423834336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823023423834336.png)
设∠COD=3x°,则∠COE=2x°
∴3x+2x=55
∴x=11
∴∠COD=33°.
点评:本题知识点较多,综合性强,难度较大,需要学生熟练掌握各方面的基础知识.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目