题目内容
【题目】在一个不透明的口袋里装有若干个相同的红球,为了用估计袋中红球的数量,八(1)班学生在数学实验室分组做摸球实验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:
摸球的次数s | 150 | 300 | 600 | 900 | 1200 | 1500 |
摸到白球的频数n | 63 | a | 247 | 365 | 484 | 606 |
摸到白球的频率 | 0.420 | 0.410 | 0.412 | 0.406 | 0.403 | b |
(1) 按表格数据格式,表中的= ;= ;
(2) 请估计:当次数s很大时,摸到白球的频率将会接近 (精确到0.1);
(3)请推算:摸到红球的概率是 (精确到0.1).
【答案】(1)a=123,b=0.404;(2)0.4;(3)0.6.
【解析】
(1)根据频率=频数÷样本总数分别求得a、b的值即可;
(2)从表中的统计数据可知,摸到白球的频率稳定在0.4左右;
(3)摸到红球的概率为1-0.4=0.6;
解:(1)a=300×0.41=123,b=606÷1500=0.404;
(2)当次数s很大时,摸到白球的频率将会接近0.4;
(3)摸到红球的概率是1-0.4=0.6;
练习册系列答案
相关题目