题目内容

【题目】如图,AB是⊙O的直径,C为⊙O上一点,点D在CO的延长线上,连接BD,已知BC=BD,AB=4,BC=2
(1)求证:BD是⊙O的切线;
(2)求CD的长.

【答案】
(1)证明:∵AB为圆O的直径,

∴∠ACB=90°,

在Rt△ABC中,∵sinA= = =

∴∠A=60°,

∵AO=CO,

∴△AOC为等边三角形,

∴∠AOC=∠ACO=60°,

∴∠BCD=∠ACB﹣∠ACO=90°﹣60°=30°,

∵∠BOD=∠AOC=60°,

∴∠OBD=180°﹣(∠BOD+∠D)=90°,

∴OB⊥BD,

则BD为圆O的切线


(2)解:∵AB为圆O的直径,且AB=4,

∴OB=OC=2,

∵BC=BD,

∴∠BCD=∠D,

∵OC=OB,

∴∠BCD=∠OBC,

∴∠D=∠OBC,

在△BCD和△OCB中,

∠D=∠OBC,∠BCD=∠OCB,

∴△BCD∽△OCB,

= ,即 =

则CD=6


【解析】(1)由AB为圆的直径,利用直径所对的圆周角为直角得到∠ACB为直角,进而得到三角形ABC为直角三角形,利用锐角三角函数定义求出sinA的值,利用特殊角的三角函数值求出∠A的度数为60度,再由OA=OC,得到三角形AOC为等边三角形,利用等边三角形的性质得到两个角为60度,进而求出∠BCD为30度,利用三角形内角和定理求出∠OBD为直角,即OB垂直于BD,即可得证;(2)由AB为直径,求出半径为2,由BC=BD,利用等边对等角得到一对角相等,再由OC=OB得到一对角相等,等量代换得到∠D=∠OBC,再由一对公共角相等,得到三角形OCB与三角形BCD相似,由相似得比例,即可求出CD的长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网