题目内容

两个同心圆的半径分别为1cm和2cm,大圆的弦AB与小圆相切,那么AB=(  )
A、1cm
B、2
3
cm
C、3cm
D、4cm
分析:设同心圆的圆心为O,过O作OC⊥AB,连OA,根据垂径定理得AC=BC,又大圆的弦AB与小圆相切,可得OC为小圆的半径,即OC=1cm,在Rt△OAC中,利用勾股定理计算出AC,即可得到AB的长.
解答:精英家教网解:设同心圆的圆心为O,过O作OC⊥AB,连OA,如图,
∴AC=BC,
又∵大圆的弦AB与小圆相切,
∴OC为小圆的半径,即OC=1cm,
在Rt△OAC中,AC=
OA2-OC2
=
22-12
=
3
(cm),
∴AB=2
3
cm.
故选B.
点评:本题考查了切线的性质:圆心与切点的连线垂直切线;过圆心垂直于切线的直线必过切点;过圆外一点引圆的两条切线,切线长相等.也考查了垂径定理以及勾股定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网