题目内容
两个同心圆的半径分别为1cm和2cm,大圆的弦AB与小圆相切,那么AB=( )
A、1cm | ||
B、2
| ||
C、3cm | ||
D、4cm |
分析:设同心圆的圆心为O,过O作OC⊥AB,连OA,根据垂径定理得AC=BC,又大圆的弦AB与小圆相切,可得OC为小圆的半径,即OC=1cm,在Rt△OAC中,利用勾股定理计算出AC,即可得到AB的长.
解答:解:设同心圆的圆心为O,过O作OC⊥AB,连OA,如图,
∴AC=BC,
又∵大圆的弦AB与小圆相切,
∴OC为小圆的半径,即OC=1cm,
在Rt△OAC中,AC=
=
=
(cm),
∴AB=2
cm.
故选B.
∴AC=BC,
又∵大圆的弦AB与小圆相切,
∴OC为小圆的半径,即OC=1cm,
在Rt△OAC中,AC=
OA2-OC2 |
22-12 |
3 |
∴AB=2
3 |
故选B.
点评:本题考查了切线的性质:圆心与切点的连线垂直切线;过圆心垂直于切线的直线必过切点;过圆外一点引圆的两条切线,切线长相等.也考查了垂径定理以及勾股定理.
练习册系列答案
相关题目