题目内容
【题目】如图,在四边形中,的平分线交于点的平分线交于点,交于点,且.
(1)求证:四边形是平行四边形;
(2)若,求线段的长.
【答案】(1)见详解;(2)3.
【解析】
(1)证出∠GBC+∠GCB=90°,由角平分线的定义得出∠ABC=2∠GBC,∠BCD=2∠DCF,得出∠ABC+∠BCD=180°,证出AB∥CD,即可得出结论;
(2)由平行四边形的性质得出AD∥BC,DC=AB=,AD=BC=6,由平行线的性质和角平分线定义证出∠AEB=∠ABE,得出AE=AB=,同理:DF=DC,得出AE=DF,AF=DE,证出2AB=AD+EF,即可得出结果.
(1)证明:∵BE⊥CF,
∴∠BGF=90°,
∴∠GBC+∠GCB=90°,
∵∠ABC的平分线交AD于点E,∠BCD的平分线交AD于点F,
∴∠ABC=2∠GBC,∠BCD=2∠DCF,
∴∠ABC+∠BCD=180°,
∴AB∥CD,
∵AB=CD,
∴四边形ABCD是平行四边形;
(2)解:∵四边形ABCD是平行四边形,
∴AD∥BC,DC=AB=,AD=BC=6,
∴∠AEB=∠CBE,
∵∠ABC的平分线交AD于点E,
∴∠ABE=∠CBE,
∴∠AEB=∠ABE,
∴AE=AB=,
同理:DF=DC,
∴AE=DF,
∴AF=DE,
∵AE+DF=AD+EF,
∴2AB=AD+EF,
∴EF=2ABAD=96=3.
【题目】为了更好的治理西流湖水质,保护环境,市治污公司决定购买 10 台污水处理设备.现有 A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:
A 型 | B 型 | |
价格(万元/台) | a | b |
处理污水量(吨/月) | 240 | 200 |
经调查:购买一台 A 型设备比购买一台 B 型设备多 2 万元,购买 2 台 A 型设备比购买 3 台 B 型设备少 6 万元.
(1)求 a,b 的值;
(2)经预算:市治污公司购买污水处理设备的资金不超过 105 万元,你认为该公司 有哪几种购买方案;
(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于 2040 吨,为了节 约资金,请你为治污公司设计一种最省钱的购买方案.