题目内容
【题目】如图,将口ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.
(1)求证:△ABF≌△ECF
(2)若∠AFC=2∠D,连接AC、BE.求证:四边形ABEC是矩形.
【答案】(1)见解析;(2)见解析.
【解析】试题分析:(1)由四边形ABCD是平行四边形,CE=DC,易证得∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,则可证得△ABF≌△ECF;
(2)由△ABF≌△ECF,∠AFC=2∠ABC,即可证得∠ABC=∠BAF,继而证得AE=BC,又由AD=BC,则可得AE=AD,再利用等腰三角形三线合一的性质可得AC⊥ED,进而可得结论.
试题解析:证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD.
∵EC=DC,
∴AB=EC,
在△ABF和△ECF中,
∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,
∴△ABF≌△ECF(AAS);
(2)∵△ABF≌△ECF,
∴AF=FE,BF=FC.
∵∠AFC=2∠ABC,
又∵∠AFC=∠ABC+∠BAF,
∴∠ABC=∠BAF.
∴AF=BF.
∴AE=BC,
又∵四边形ABCD为平行四边形,
∴AD=BC.
∴AE=AD.
∵CE=DC,
∴AC⊥ED,
∴四边形ABEC是矩形.
练习册系列答案
相关题目