题目内容

新年晚会,是我们最欢乐的时候.会场上,悬挂着五彩缤纷的小装饰,其中有各种各样的立体图形.
(1)数一下每一个多面体具有的顶点数(V)、棱数(E)和面数(F),并且把结果记入表中
(2)观察表中数据,猜想多面体的顶点数(V)、棱数(E)和面数(F)之间的关系. (3)伟大的数学家欧拉(Euler 1707﹣1783)证明了这一令人惊叹的关系式,即欧拉公式.若已知一个多面体的顶点数V=196,棱的条数E=294.请你用欧拉公式求这个多面体的面数.
解:(1)如表所示:
(2)∵4+4﹣6=2,
8+6﹣12=2,
6+8﹣12=2,
20+12﹣30=2,
12+20﹣30=2,
∴V+F﹣E=2;
(3)由V+F﹣E=2,
即:196+F﹣294=2,
F=294+2﹣196=100.
这是一个100面体.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网