题目内容
【题目】(本题满分12分)已知,直线AP是过正方形ABCD顶点A的任一条直线(不过B、C、D三点),点B关于直线AP的对称点为E,连结AE、BE、DE,直线DE交直线AP于点F.
(1)如图1,直线AP与边BC相交.
①若∠PAB=20°,则∠ADF= °,∠BEF= °;
②请用等式表示线段AB、DF、EF之间的数量关系,并说明理由;
(2)如图2,直线AP在正方形ABCD的外部,且,,求线段AF的长.
【答案】(1)①65,45;②;(2)2.
【解析】试题分析:(1)①利用轴对称的性质以及等腰三角形的性质得出即可;②连接BD,BF先依据翻折的性质证明△BEF为等腰直角三角形,从而得到△BFD为直角三角形,由勾股定理可得到BF、FD、BD之间的关系,然后由△ABD为等腰直角三角形,从而得打BD与AB之间的关系,故此可得到BF、FD、AB之间的关系
(2)连接BF、DB.先依据翻折的性质和等腰三角形的性质证明∠BFD=90°,然后在△BDF中,由勾股定理可求得BD的长,从而求得AB的长,然后在等腰直角三角形EFB中可求得FG=GB=8,然后再Rt△AGB中,由勾股定理可求得AG的长,由AF=FG-AG可求得AG的长.
试题解析:(1)①翻折的性质可知:∠PAB=∠PAE=20°,AE=AB.
∴∠AEB=∠ABE=×(180°-40°)=70°.
∵ABCD为正方形,
∴AB=AD,∠BAD=90°.
∴AE=AD,∠DAE=50°.
∴∠ADE=∠AED=×(180°-50°)=65°.
∴∠BEF=180°-70°-65°=45°.
②线段AB、DF、EF之间的数量关系是:BF2+DF2=2AB2.
理由:连接BD,BF.
∵由翻折的性质可知:BF=FE,
∴∠FBE=∠FEB=45°.
∴∠BFE=90°.
∴BF2+DF2=DB2.
∵BD=AB,
∴BD2=2AB2.
∴BF2+DF2=2AB2.
(2)如图2所示:连接BF、DB.
由翻折的性质可知:AB=AE,∠1=∠2,EF=BF=8,EG=GB.
又∵AD=AB,
∴AE=AD.
∴∠1=∠3.
∴∠2=∠3.
∵∠4=∠5,
∴∠5+∠3=∠2+∠4=90°.
∴△FDB和△EFB均为直角三角形,
∴BD=.
∴AB=BD=10×=10.
∵在Rt△EFB中,EF=BF,
∴EB=EF=×8=16.
∴GF=EG=BG=8.
在Rt△ABG中,AG==6.
∴AF=FG-AG=8-6=2.