题目内容

【题目】如图所示,已知正方形ABCD,直角三角形纸板的一个锐角顶点与点A重合,纸板绕点A旋转时,直角三角形纸板的一边与直线CD交于E,分别过B、D作直线AE的垂线,垂足分别为F、G.
(1)当点E在DC延长线时,如图①,求证:BF=DG﹣FG;
(2)将图①中的三角板绕点A逆时针旋转得图②、图③,此时BF、FG、DG之间又有怎样的数量关系?请直接写出结论(不必证明)

【答案】
(1)证明:如图①,

∵四边形ABCD是正方形,

∴AB=AD,

∵B、D作直线AE的垂线,垂足分别为F、G.

∴∠AFB=∠DGA=90°,

∵∠BAF+∠GAD=90°,∠BAF+∠ABF=90°

∴∠ABF=∠GAD,

在△ABF和△ADG中,

∴△ABF≌△ADG(AAS),

∴BF=AG,AF=DG,

∵AG=AF﹣FG;

∴BF=DG﹣FG


(2)证明:如图②,

∵四边形ABCD是正方形,

∴AB=AD,

∵B、D作直线AE的垂线,垂足分别为F、G.

∴∠AFB=∠DGA=90°,

∵∠BAF+∠GAD=90°,∠BAF+∠ABF=90°

∴∠ABF=∠DAG,

在△ABF和△ADG中,

∴△ABF≌△ADG(AAS),

∴BF=AG,AF=DG,

∵AG=AF+FG;

∴BF=DG+FG;

如图③,∵四边形ABCD是正方形,

∴AB=AD,

∵B、D作直线AE的垂线,垂足分别为F、G.

∴∠AFB=∠DGA=90°,

∵∠BAF+∠GAD=90°,∠BAF+∠ABF=90°

∴∠ABF=∠DAG,

在△ABF和△ADG中,

∴△ABF≌△ADG(AAS),

∴BF=AG,AF=DG,

∵AG=FG﹣AF;

∴BF=FG﹣DG.


【解析】(1)如图①,由四边形ABCD是正方形,可得AB=AD,由B、D作直线AE的垂线,垂足分别为F、G.可得∠AFB=∠DGA=90°由角的关系可得∠ABF=∠GAD,可得△ABF≌△ADG可得BF=AG,AF=DG,利用AG=AF﹣FG;即可证得BF=DG﹣FG;(2)如图②,由四边形ABCD是正方形,可得AB=AD,由B、D作直线AE的垂线,垂足分别为F、G.可得∠AFB=∠DGA=90°由角的关系可得∠ABF=∠GAD,可得△ABF≌△ADG可得BF=AG,AF=DG,利用AG=AF+FG,可得BF=DG+FG;如图③,由四边形ABCD是正方形,可得AB=AD,由B、D作直线AE的垂线,垂足分别为F、G.可得∠AFB=∠DGA=90°由角的关系可得∠ABF=∠GAD,可得△ABF≌△ADG可得BF=AG,AF=DG,利用AG=FG﹣AF,可得BF=FG﹣DG.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网