题目内容
【题目】某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与《新型冠状病毒防治与预防知识》作答(满分100分),社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行数据统计、数据分析.
甲 | 85 | 80 | 95 | 85 | 90 | 95 | 100 | 65 | 75 | 85 |
90 | 90 | 70 | 100 | 90 | 80 | 80 | 90 | 98 | 75 | |
乙 | 80 | 60 | 80 | 85 | 95 | 65 | 90 | 85 | 100 | 80 |
95 | 75 | 80 | 80 | 70 | 100 | 95 | 75 | 90 | 90 |
表1分数统计表
成绩 小区 | 60≤x≤70 | 70<x≤80 | 80<x≤90 | 90<x≤100 |
甲 | 2 | 5 | a | b |
乙 | 3 | 7 | 5 | 5 |
表2:频数分布表
统计量 小区 | 平均数 | 中位数 | 众数 |
甲 | 85.75 | 87.5 | c |
乙 | 83.5 | d | 80 |
表3:统计量
(1)填空:a= ,b= ,c= ,d= ;
(2)甲小区共有800人参与答卷,请估计甲小区成绩大于90分的人数;
(3)对于此次抽样调查中测试成绩为60≤x≤70的居民,社区鼓励他们重新学习,然后从中随机抽取两名居民进行测试,求刚好抽到一个是甲小区居民,另一个是乙小区居民的概率.
【答案】(1)8,5,90,82.5;(2)200人.(3)
【解析】
(1)数出甲小区80<x≤90的数据数可求a;甲小区90<x≤100的数据数可求b;根据中位数的意义,将乙小区的抽查的20人成绩排序找出处在中间位置的两个数的平均数即可为中位数,从甲小区成绩中找出出现次数最多的数即为众数;
(2)抽查甲小区20人中成绩高于90分的人数有5人,因此甲小区成绩大于90分的人数占抽查人数为25%,进而可估计甲小区成绩大于90分的人数;
(3)列举出所有等可能结果,利用概率公式求解可得.
(1)数出甲小区80<x≤90的数据数得到:,
数出甲小区90<x≤100的数据数得到:,
甲小区的出现次数最多的是90,因此众数是90,即c=90,
中位数是从小到大排列后处在第10、11位两个数的平均数,
由乙小区中的数据可得处在第10、11位的两个数的平均数为(80+85)÷2=82.5,
因此d=82.5.
故答案为:8,5,90,82.5;
(2)800×=200(人).
答:估计甲小区成绩大于90分的人数是200人.
(3)设乙小区三个人编号为A、B、C,甲小区编号为D、E,
则所有可能组合为:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE共10种,其中刚好抽到一个是甲小区居民,另一个是乙小区居民的情况数为6种,
∴刚好抽到一个是甲小区居民,另一个是乙小区居民的概率==.