题目内容

【题目】如图,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当3CQ=CE时,EP+BP=

【答案】8
【解析】解:如图,延长EF交BQ的延长线于G.

∵EG∥BC,

∴∠G=∠GBC,

∵∠GBC=∠GBP,

∴∠G=∠PBG,

∴PB=PG,

∴PE+PB=PE+PG=EG,

∵3CQ=EC,

∴EQ=2CQ,

∵EG∥BC,

= =2,∵BC=4,

∴EG=8,

∴EP+PB=EG=8,

所以答案是:8.

【考点精析】本题主要考查了相似三角形的判定与性质的相关知识点,需要掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网