题目内容
【题目】已知,如图,EF⊥AC于F,DB⊥AC于M,∠1=∠2,∠3=∠C.
(1)求证:AB//MN.
(2)若∠C=40°,∠MND=100°,求∠CAD的度数.
【答案】(1)证明见解析;(2)60°.
【解析】
(1)由EF⊥AC,DB⊥AC得到EF∥DM,根据平行线的性质得∠2=∠CDM,而∠1=∠2,则∠1=∠CDM,根据平行线的判定得到MN∥CD,所以∠C=∠AMN,又∠3=∠C,于是∠3=∠AMN,然后根据平行线的判定即可得到AB∥MN.
(2)根据平行线的性质和三角形外角的性质求解即可.
解:(1)证明:∵EF⊥AC,DB⊥AC,
∴EF∥DM,
∴∠2=∠CDM,
∵∠1=∠2,
∴∠1=∠CDM,
∴MN∥CD,
∴∠C=∠AMN,
∵∠3=∠C,
∴∠3=∠AMN,
∴AB∥MN;
(2)∵MN∥CD,
∴∠C=∠AMN=40°,
∵∠MND=100°=∠AMN+∠CAD,
∴∠CAD=100°-40°=60°.
练习册系列答案
相关题目