题目内容
【题目】某街道需要铺设管线的总长为9000,计划由甲队施工,每天完成150.工作一段时间后,因为天气原因,想要40天完工,所以增加了乙队.如图表示剩余管线的长度与甲队工作时间(天)之间的函数关系图象.
(1)直接写出点的坐标;
(2)求线段所对应的函数解析式,并写出自变量的取值范围;
(3)直接写出乙队工作25天后剩余管线的长度.
【答案】(1)(10,7500)(2)直线BC的解析式为y=-250x+10000,自变量x的取值范围为10≤x≤40.(3)1250米.
【解析】
(1)由于前面10天由甲单独完成,用总的长度减去已完成的长度即为剩余的长度,从而求出点B的坐标;(2)利用待定系数法求解即可;(3)已队工作25天后,即甲队工作了35天,故当x=35时,函数值即为所求.
(1)9000-150×10=7500.
∴点B的坐标为(10,7500)
(2)设直线BC的解析式为y=kx+b,依题意,得:
解得:
∴直线BC的解析式为y=-250x+10000,
∵乙队是10天之后加入,40天完成,
∴自变量x的取值范围为10≤x≤40.
(3)依题意,当x=35时,y=-250×35+10000=1250.
∴乙队工作25天后剩余管线的长度是1250米.
【题目】体育理化考试前夕,九(2)班组织了体育理化考试模拟(体育+理化=100分),模拟测试后相关负责人对成绩进行了统计,制作如下频数分布表和频数分布直方图,请根据表中信息解答问题:
分数段(表示分数) | 频数 | 频率 |
5 | 0.1 | |
5 | ||
0.4 | ||
15 | 0.3 | |
5 | 0.1 |
(1)表中________,________,并补全直方图;
(2)若用扇形统计图描述此成绩分布情况,则分数段所对应扇形的圆心角度数是_____;
(3)若该校九年级共950名学生,请估计该年级分数在的学生有多少人?