题目内容
【题目】甲、乙两人利用不同的交通工具,沿同一路线分别从A、B两地同时出发匀速前往C地(B在A、C两地的途中).设甲、乙两车距A地的路程分别为y甲、y乙(千米),行驶的时间为x(小时),y甲、y乙与x之间的函数图象如图所示.
(1)直接写出y甲、y乙与x之间的函数表达式;
(2)如图,过点(1,0)作x轴的垂线,分别交y甲、y乙的图象于点M,N.求线段MN的长,并解释线段MN的实际意义;
(3)在乙行驶的过程中,当甲、乙两人距A地的路程差小于30千米时,求x的取值范围.
【答案】
(1)
解:设y甲=kx,
把(3,180)代入,得3k=180,解得k=60,
则y甲=60x;
设y乙=mx+n,
把(0,60),(3,180)代入,
得 ,解得 ,
则y乙=40x+60
(2)
解:当x=1时,
y甲=60x=60,y乙=40x+60=100,
则MN=100﹣60=40(千米),
线段MN的实际意义:表示甲、乙两人出发1小时后,他们相距40千米
(3)
解:分三种情况:
①当0<x≤3时,
(40x+60)﹣60x<30,解得x>1.5;
∴1.5<x≤3.
②当3<x≤5时,
60x﹣(40x+60)<30,解得x<4.5;
∴3<x≤4.5.
③当5<x≤6时,
300﹣(40x+60)<30,解得x>5.25.
∴5.25<x≤6.
综上所述,在乙行驶的过程中,当甲、乙两人距A地的路程差小于30千米时,x的取值范围是1.5<x<4.5或5.25<x≤6
【解析】(1)利用待定系数法即可求出y甲、y乙与x之间的函数表达式;
(2)把x=1代入(1)中的函数解析式,分别求出对应的y甲、y乙的值,则线段MN的长=y乙-y甲 , 进而解释线段MN的实际意义;
(3)分三种情况进行讨论:①0<x≤3;②3<x≤5;③5<x≤6.分别根据甲、乙两人距A地的路程差小于30千米列出不等式,解不等式即可.
【考点精析】本题主要考查了确定一次函数的表达式的相关知识点,需要掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法才能正确解答此题.
【题目】为了了解学校开展“孝敬父母,从家务事做起”活动的实施情况,该校抽取八年级5名学生调查他们一周(按7天计算)做家务所用时间(单位:小时,调查结果保留一位小数),得到一组数据,并绘制成统计表,请根据表完成下列各题:
分组 | 划记 | 频数 | 频率 |
0.55~1.05 | 正正… | 14 | 0.28 |
1.05~1.55 | 正正正 | 15 | 0.30 |
1.55~2.05 | 正… | 7 | |
2.05~2.55 | … | 4 | 0.08 |
2.55~3.05 | … | 5 | 0.10 |
3.05~3.55 | … | 3 | |
3.55~4.05 | T | 0.04 |
(1)填写频率分布表中末完成的部分.
(2)由以上信息判断,每周做家务的时间不超过1.55h的学生所占的百分比是 .
(3)针对以上情况,写一个20字以内倡导“孝敬父母,热爱劳动”的句子.