题目内容
【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
【答案】C
【解析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
∵抛物线的开口方向向下,
∴a<0;
∵抛物线与x轴有两个交点,
∴b2-4ac>0,即b2>4ac,①正确;
由图象可知:对称轴x==-1,
∴2a=b,2a+b=4a,
∵a≠0,
∴2a+b≠0,②错误;
∵图象过点A(-3,0),
∴9a-3b+c=0,2a=b,
∴9a-6a+c=0,c=-3a,③正确;
由图象可知:当x=1时y=0,
∴a+b+c=0,④正确.
故选:C.
练习册系列答案
相关题目