题目内容
【题目】把y=ax+b(其中a、b是常数,x、y是未知数)这样的方程称为“雅系二元一次方程”.当y=x时,“雅系二元一次方程y=ax+b”中x的值称为“雅系二元一次方程”的“完美值”.例如:当y=x时,“雅系二元一次方程”y=3x﹣4化为x=3x﹣4,其“完美值”为x=2.
(1)求“雅系二元一次方程”y=5x+6的“完美值”;
(2)x=3是“雅系二元一次方程”y=3x+m的“完美值”,求m的值;
(3)“雅系二元一次方程”y=kx+1(k≠0,k是常数)存在“完美值”吗?若存在,请求出其“完美值”,若不存在,请说明理由.
【答案】(1);(2)﹣6;(3)当k=1时,不存在“完美值”,理由见解析;当k≠1,k≠0时,存在“完美值”.
【解析】
(1)由已知得到式子x=5x+6,求出x即可;(2)由已知可得x=3x+m,将x=3代入即可求m;(3)假设存在,得到x=kx+1,所以(1-k)x=1,当k=1时,不存在“完美值”,当k≠1,k≠0时,存在“完美值”x=.
解:(1)由已知可得,x=5x+6,
解得x=﹣,
∴“雅系二元一次方程”y=5x+6的“完美值”为x=﹣;
(2)由已知可得x=3x+m,x=3,
∴m=﹣6;
(3)若“雅系二元一次方程”y=kx+1(k≠0,k是常数)存在“完美值”,
则有x=kx+1,
∴(1﹣k)x=1,
当k=1时,不存在“完美值”,
当k≠1,k≠0时,存在“完美值”x=.
练习册系列答案
相关题目