题目内容
【题目】二次函数y=ax2+bx+c的图象过A(﹣3,0),B(1,0),C(0,3),点D在函数图象上,点C,D是二次函数图象上的一对对称点,一次函数图象过点B,D,求:
(1)一次函数和二次函数的解析式;
(2)写出使一次函数值大于二次函数值的x的取值范围.
【答案】(1)y1=﹣x2﹣2x+3(2)x<﹣2或x>1.
【解析】
试题分析:(1)将A、B、C的坐标代入抛物线的解析式中即可求得二次函数的解析式,进而可根据抛物线的对称轴求出D点的坐标,再用待定系数法求出一次函数解析式;
(2)根据(1)画出函数图象,即可写出一次函数值大于二次函数值的x的取值范围.
解:(1)二次函数y1=ax2+bx+c的图象经过点A(﹣3,0),B(1,0),C(0,3),
则,
解得.
故二次函数图象的解析式为y1=﹣x2﹣2x+3,
∵对称轴x=﹣1,
∴点D的坐标为(﹣2,3),
设y2=kx+b,
∵y2=kx+b过B、D两点,
∴,
解得.
∴y2=﹣x+1;
(2)函数的图象如图所示,
∴当y2>y1时,x的取值范围是x<﹣2或x>1.
练习册系列答案
相关题目