题目内容

【题目】已知直线CD⊥AB于点O,∠EOF=90°,射线OP平分∠COF.

(1)如图1,∠EOF在直线CD的右侧:

①若∠COE=30°,求∠BOF和∠POE的度数;

②请判断∠POE与∠BOP之间存在怎样的数量关系?并说明理由.

(2)如图2,∠EOF在直线CD的左侧,且点E在点F的下方:

①请直接写出∠POE与∠BOP之间的数量关系;

②请直接写出∠POE与∠DOP之间的数量关系.

【答案】1BOF= 30°,∠POE=30°②∠POE∠BOP2①∠POE∠BOP②∠POE+∠DOP270°

【解析】

1)①根据余角的性质得到∠BOF=∠COE30°,求得∠COF90°+30°=120°,根据角平分线的定义即可得到结论;

②根据垂线的性质和角平分线的定义即可得到结论;

2)①根据角平分线的定义得到∠COP=∠POF,求得∠POE90°+POF,∠BOP90°+COP,于是得到∠POE=∠BOP

②根据周角的定义即可得到结论.

(1)①∵CD⊥AB,

∴∠COB=90°,

∵∠EOF=90°,

∴∠COE+∠BOE=∠BOE+∠BOF=90°,

∴∠BOF=∠COE=30°,

∴∠COF=90°+30°=120°,

∵OP平分∠COF,

∴∠COP=∠COF=60°,

∴∠POE=∠COP﹣∠COE=30°;

②CD⊥AB,

∴∠COB=90°,

∵∠EOF=90°,

∴∠COE+∠BOE=∠BOE+∠BOF=90°,

∴∠BOF=∠COE,

∵OP平分∠COF,

∴∠COP=∠POF,

∴∠POE=∠COP﹣∠COE,∠BOP=∠POF﹣∠BOF,

∴∠POE=∠BOP;

(2)①∵∠EOF=∠BOC=90°,

∵PO平分∠COF,

∴∠COP=∠POF,

∴∠POE=90°+∠POF,∠BOP=90°+∠COP,

∴∠POE=∠BOP;

②∵∠POE=∠BOP,∠DOP+∠BOP=270°,

∴∠POE+∠DOP=270°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网