题目内容
【题目】两个不同长度的物体在同一时刻同一地点的太阳光下得到的投影是( )A.相等B.长的较长C.短的较长D.不能确定
【答案】D【解析】由于不知道两个物体的摆放情况,无法比较两物体. 故选D.【考点精析】利用平行投影对题目进行判断即可得到答案,需要熟知太阳光线可以看成是平行光线,平行光线所形成的投影称为平行投影;作物体的平行投影:由于平行投影的光线是平行的,而物体的顶端与影子的顶端确定的直线就是光线,故根据另一物体的顶端可作出其影子.
【题目】在△ABC中,∠C>∠B,AE平分∠BAC,F为射线AE上一点(不与点E重合),且FD⊥BC于D;(1)如果点F与点A重合,且∠C=50°,∠B=30°,如图1,求∠EFD的度数;(2)如果点F在线段AE上(不与点A重合),如图2,问∠EFD与∠C﹣∠B有怎样的数量关系?并说明理由.(3)如果点F在△ABC外部,如图3,此时∠EFD与∠C﹣∠B的数量关系是否会发生变化?请说明理由.
【题目】人往路灯下行走的影子变化情况是( )A.长短长B.短长短C.长长短D.短短长
【题目】如图,在△ABC中,∠BAC=90°,AB=AC,点D是AB的中点,连接CD,过B作BE⊥CD交CD的延长线于点E,连接AE,过A作AF⊥AE交CD于点F.
(1)求证:AE=AF;
(2)求证:CD=2BE+DE.
【题目】已知关于x的方程(m+1)x|m|+2=0是一元一次方程,则m=______
【题目】小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为( ).A.4℃B.9℃C.-1℃D.-9℃
【题目】如图,抛物线y=ax2+bx+c(a≠0)与x轴、y轴分别交于点A(﹣1,0),B(3,0)、C(0,﹣3)三点.
(1)直接写出抛物线的解析式 ;
(2)点D(2,m)在第一象限的抛物线上,连接BC、BD,试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由.
(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′,在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒(0≤t≤3),试求S与t之间的函数关系式?
【题目】下列说法中,其中正确的个数是( )
(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a表示正有理数,则-a一定是负数;(4)a是大于-1的负数,则a2小于a3
A. 1 B. 2 C. 3 D. 4
【题目】如图,在平面直角坐标系XOY中,A,B,C.
(1)请画出关于轴对称的(其中分别是的对应点,不写画法);
(2)直接写出三点的坐标: .
(3)计算△ABC的面积.