题目内容

在平面直角坐标系中,点B(0,4),C(-5,4),点A是x轴负半轴上一点,S四边形AOBC=24.

(1)线段BC的长为
5
5
,点A的坐标为
(-7,0)
(-7,0)

(2)如图1,BM平分∠CBO,CM平分∠ACB,BM交CM于点M,试给出∠CMB与∠CAO之间满足的数量关系式,并说明理由;
(3)若点P是在直线CB与直线AO之间的一点,连接BP、OP,BN平分∠CBP,ON平分∠AOP,BN交ON于N,请依题意画出图形,给出∠BPO与∠BNO之间满足的数量关系式,并说明理由.
分析:(1)根据点B、C的横坐标求出BC的长度即可;再根据四边形的面积求出OA的长度,然后根据点A在y轴的负半轴写出点A的坐标;
(2)根据两直线平行,同旁内角互补用∠CAO表示出∠ACB,再根据角平分线的定义表示出∠MAB和∠MBC,然后利用三角形的内角和定理列式整理即可得解;
(3)分①点P在OB的左边时,根据三角形的内角和定理表示出∠PBO+∠POB,再根据两直线平行,同旁内角互补和角平分线的定义表示出∠NBP+∠NOP,然后在△NBO中,利用三角形的内角和定理列式整理即可得解;②点P在OB的右边时,求出∠CBP+∠AOP+∠BPO=360°,再根据角平分线的定义表示出∠PBN+∠PON,然后利用四边形的内角和定理列式整理即可得解.
解答:解:(1)∵点B(0,4),C(-5,4),
∴BC=5,
S四边形AOBC=
1
2
(BC+OA)•OB=
1
2
(5+OA)•4=24,
解得OA=7,
所以,点A的坐标为(-7,0);

(2)∵点B、C的纵坐标相同,
∴BC∥OA,
∴∠ACB=180°-∠CAO,
∠CBO=90°,
∵BM平分∠CBO,CM平分∠ACB,
∴∠MCB=
1
2
(180°-∠CAO)=90°-
1
2
∠CAO,
∠MBC=
1
2
∠CBO=
1
2
×90°=45°,
在△MBC中,∠CMB+∠MCB+∠MBC=180°,
即∠CMB+90°-
1
2
∠CAO+45°=180°,
解得∠CMB=45°+
1
2
∠CAO;

(3)①如图1,当点P在OB左侧时,∠BPO=2∠BNO.
理由如下:在△BPO中,∠PBO+∠POB=180°-∠BPO,
∵BC∥OA,BN平分∠CBP,ON平分∠AOP,
∴∠NBP+∠NOP=
1
2
(180°-∠PBO-∠POB),
在△NOB中,∠BNO=180°-(∠NBP+∠NOP+∠PBO+∠POB),
=180°-[
1
2
(180°-∠PBO-∠POB)+∠PBO+∠POB],
=90°-
1
2
(∠PBO+∠POB),
=90°-
1
2
(180°-∠BPO),
=
1
2
∠BPO,
∴∠BPO=2∠BNO;

②如图2,当点P在OB右侧时,∠BNO+
1
2
∠BPO=180°.
理由如下:∵BC∥OA,
∴∠CBP+∠AOP+∠BPO=360°,
∵BN平分∠CBP,ON平分∠AOP,
∴∠PBN+∠PON+
1
2
∠BPO=
1
2
×360°=180°,
∴∠PBN+∠PON=180°-
1
2
∠BPO,
在四边形BNOP中,∠BNO=360°-∠PBN-∠PON-∠BPO=360°-(180°-
1
2
∠BPO)-∠BPO=180°-
1
2
∠BPO,
∴∠BNO+
1
2
∠BPO=180°.
点评:本题考查了三角形的内角和定理,角平分线的定义,平行线的性质,以及坐标与图形性质,准确识图理清图中各角度之间的关系是解题关键,(3)要注意分情况讨论.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网