题目内容

【题目】如图,D为等边ABCBC上一点,DEABE,若BDCD=21DE=2 AE

【答案】4

【解析】试题分析:由等边三角的性质可得:AB=BC,∠B=60°,由DE⊥AB于E,可得:∠DEB=90°,∠BDE=30°,由直角三角形中30°角所对的直角边等于斜边的一半,可得:BD=2BE,然后由勾股定理可求BE和BD的值,再由BD:CD=2:1,可求CD的长,进而确定BC的长,由AB=BC即可求出AE的长.

试题解析:∵△ABC是等边三角形,

AB=BC,B=60°,

DEABE,

∴∠DEB=90°,

∴∠BDE=30°,

BD=2BE,

RtBDE中,设BE=x,则BD=2x,

DE=2

由勾股定理得:(2x2x2=22

解得:x=2,

所以BE=2,BD=4,

BD:CD=2:1,

CD=2,

BC=BD+CD=6,

AB=BC,

AB=6,

AE=AB﹣BE

AE=6﹣2=4.

练习册系列答案
相关题目

【题目】问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?

探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.

探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?

如图①,连接边长为2的正三角形三条边的中点,从上往下看:

边长为1的正三角形,第一层有1个,第二层有3个,共有个;

边长为2的正三角形一共有1个.

探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?

如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.

探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?

(仿照上述方法,写出探究过程)

结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?

(仿照上述方法,写出探究过程)

应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网