题目内容
【题目】如图,等腰三角形ABC中,AC=BC=10,AB=12.
(1)动手操作:利用尺规作以BC为直径的⊙O,⊙O交AB于点D,⊙O交AC于点E,并且过点D作DF⊥AC交AC于点F.
(2)求证:直线DF是⊙O的切线;
(3)连接DE,记△ADE的面积为S1 , 四边形DECB的面积为S2 , 求 的值.
【答案】
(1)
解:如下图所示,图形为所求;
(2)
证明:连接OD
∵DF⊥AC,
∴∠AFD=90°,
∵AC=BC,
∴∠A=∠B,
∵OB=OD,
∴∠B=∠ODB,
∴∠A=∠ODB
∴OD∥AC,
∴∠ODF=∠AFD=90°,
∴直线DF是⊙O的切线;
(3)
解:连接DE;
∵BC是⊙O的直径,
∴∠CDB=90°,即CD⊥AB,
∵AC=BC,CD⊥AB,
∴AD=BD= AB=6,
∵四边形DECB是圆内接四边形,
∴∠BDE+∠C=180°,
∵∠BDE+∠ADE=180°,
∴∠C=∠ADE,
∵在△ADE和△ACB中,∠ADE=∠C,∠DAE=∠CAB,
∴△ADE∽△ACB,
∴ = ,
∴ = ,
∵S△ABC=S△ADE+S四边形DECB,
∴ = = ,
∴ = ,即 = .
【解析】(1)根据题意作出图形即可;(2)连接OD,根据等腰三角形的性质得到∠A=∠ODB根据平行线的判定得到OD∥AC,由平行线的性质得到∠ODF=∠AFD=90°,于是得到结论;(3)连接DE;根据圆周角定理得到∠CDB=90°,即CD⊥AB,由等腰三角形的性质得到AD=BD= AB=6,根据圆内接四边形的性质得到∠BDE+∠C=180°,等量代换得到∠C=∠ADE,根据相似三角形的性质得到 = ,于是得到结论.
练习册系列答案
相关题目