题目内容
【题目】如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.
(1)求证:BE=CE;
(2)试判断四边形BFCD的形状,并说明理由;
(3)若BC=8,AD=10,求CD的长.
【答案】(1)证明见解析;(2)四边形BFCD是菱形,理由见解析;(3)CD=2.
【解析】
试题(1)证明△ABD≌△ACD,得到∠BAD=∠CAD,根据等腰三角形的性质即可证明;
(2)菱形,证明△BFE≌△CDE,得到BF=DC,可知四边形BFCD是平行四边形,易证BD=CD,可证明结论;
(3)设DE=x,则根据CE2=DEAE列方程求出DE,再用勾股定理求出CD.
试题解析:(1)∵AD是直径,∴∠ABD=∠ACD=90°,在Rt△ABD和Rt△ACD中,
∴Rt△ABD≌Rt△ACD,∴∠BAD=∠CAD,∵AB=AC,∴BE=CE;
(2)四边形BFCD是菱形.
∵AD是直径,AB=AC,∴AD⊥BC,BE=CE,∵CF∥BD,∴∠FCE=∠DBE,
在△BED和△CEF中,∴△BED≌△CEF,∴CF=BD,∴四边形BFCD是平行四边形,∵∠BAD=∠CAD,∴BD=CD,∴四边形BFCD是菱形;
(3)∵AD是直径,AD⊥BC,BE=CE,∴CE2=DEAE,设DE=x,∵BC=8,AD=10,
∴42=x(10﹣x),解得:x=2或x=8(舍去)在Rt△CED中,CD==2.
练习册系列答案
相关题目