题目内容

【题目】如图,在ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是 .(把所有正确结论的序号都填在横线上)

①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.

【答案】①②④.

【解析】

试题解析:①∵F是AD的中点,

∴AF=FD,

∵在ABCD中,AD=2AB,

∴AF=FD=CD,

∴∠DFC=∠DCF,

∵AD∥BC,

∴∠DFC=∠FCB,

∴∠DCF=∠BCF,

∴∠DCF=∠BCD,故此选项正确;

延长EF,交CD延长线于M,

∵四边形ABCD是平行四边形,

∴AB∥CD,

∴∠A=∠MDF,

∵F为AD中点,

∴AF=FD,

在△AEF和△DFM中,

∴△AEF≌△DMF(ASA),

∴FE=MF,∠AEF=∠M,

∵CE⊥AB,

∴∠AEC=90°,

∴∠AEC=∠ECD=90°,

∵FM=EF,

∴FC=FM,故②正确;

③∵EF=FM,

∴S△EFC=S△CFM

∵MC>BE,

∴S△BEC<2S△EFC

故S△BEC=2S△CEF错误;

④设∠FEC=x,则∠FCE=x,

∴∠DCF=∠DFC=90°-x,

∴∠EFC=180°-2x,

∴∠EFD=90°-x+180°-2x=270°-3x,

∵∠AEF=90°-x,

∴∠DFE=3∠AEF,故此选项正确.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网